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{ ABSTRACT : ;

~\/
Ultrasonic measurements of wave-propagation characteristics in composite and heterogeneous
materials provide an excellent means to study their mechanical properties. In recent vears we have
studied. both theoretically and experimentally, characteristics of elastic-wave propagation in particle-
rcinforced composites and heterogeneous materials as well as in homogenecous and laminated fiber-
reinforced composites.  Comparison of theoretical predictions with obervations of wave velocitivs
has shown good agreement and has provided a way to evaluate microstructural dependence of
mechanical properties of these materials. Modeling predictions coupled with observations can also
be used to obtain mechanical properties of the reinforcing phase. which are sometimes not casily
obtained. In this paper we present results of some of these recent studies.

We also present results of our study of changes in phase velocitics and attenuation caused
by interface layers between the reinforcing phase and the matrix. We show that this third phase
measurably modifies the dispersion behavior.  This should lead to effective characterization of

interface layer properties by ultrasonic methods. é"—‘"“

INTRODUCTION

Determination of effective elastic moduli and damping propertics of a heterogeneous or
compositc material by using elastic waves (propagating and standing) is very effective.  Scveral
theoretical studies'='* show that for long wavelengths one can calculate the cffective wave speeds of
plane-longitudinal and plane-shear waves through such a material. At long wavelengths. wave
speeds thus calculated are nondispersive; they provide values for the static cffective elastic
propertics. References to other studies can be found in those cited.

We present results of some of our recent studies of phase velocity and attenuation of
plane longitudinal and shear waves propagating in a medium with microstructure.  Microstructures
studied were either inclusions or [ibers. In the [irst casc, we examined the effect of inclusion
shape. volume fraction, and clastic propertics on wave speeds.  We studied inclusions with their
interfacc layers scparating them from the matrix medium.  For fiber-reinforced materials, we
studied continuous aligned [ibers. In this case, thc medium behaves anisotropically because of the
alignment of the fibers.

The theorctical model for these microstructural studies used a wave-scattering approach and
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predicted  the macroscopic  isotropic  elastic  properties for the case of random orientation of
mclustons and for spherical inclusions.  For aligned f{iber-reinforced materials the model gives the
amsotropic clastic properties. The scattering approach led also to an estimation of attenuation and
dispersion of waves via the optical theorem.

The scattering approach applies to a macroscopically homogencous medium, infinite in
extent. For a bounded medium such as laminated-plate  structures we, developed a hybrid
numerical technique to analvze dispersion of guided waves. In this paper we present some of our
computational  results showing the effect on dispersement characteristics caused by interface soft
favers between sulf lavers i o plate.
The experimental methods'®*+"* consisted  of a  pulse-ccho  technique and a  resonance
method These were chosen to provide the advantages of small specimens and Jow  1naccuracy
For detads of the cxperimental techniques, the reader is referred to the references cited.

THEORY
Scattering by a Single Inclusion

Consider a single elastic ellipsoidal inclusion with material properties A', g, p' embedded
in an elastic matrix with properties X. u, p. Assume that the inclusion is separated from the
matrix by a thin laver of elastic matérial with propertics \,. g,. p,. which are variable through the
thickness. Here X, u are the Lamé constants and p is the density. The geometry of he problem
is shown in Figure 1.

We need to find the field scattered by this inclusion when it is c¢xcited by an incident
elastic wave. A low-{requency approximate solution to this problem was presented earlier’® for
the case of no intermediate laver between the incluston and the matrix. It can be shown that if

the exciting ficld 1s given by. dropping the time factor ¢!@t,
©0 n

o ® - Z Z ama L 0.0« oy N 000 reny M 00 (1)
n=0 m=-n

then the scattered ficld is
2 v

u® . Z Z Ay 1:‘:: (r0.8) + 1By, N ro.0)| « 06e) (2)

v=0 pu=-»

Here L “), N “). and M“) arc spherical vector wave functions'’ that are finite at r = 0 and
~mn ~ mn ~ mn

L 3. N3
~ mn ~ mn

B

arc thosc that satisfy the radiation condition as r = e. The constants Ay, and

up arc given by"
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where vy is the volume of the cllipsoid and

e = kC. k, = w/C,. r = C/C,

3rt, v=0,2
S(v) =
2r, v=l
., v=l
Ay) =
3
. v=0.2

C, and C, are the longitudinal and shear wave speeds in the matrix medium. Expressions for

~ By

T . can be found elsewhere’.
uy

Effcctive Propertics of a Compositec Mcdium with Inclusions
Once the scattered field caused by a single inclusion is known. multiple scattering from a

number of inclusions can be easily calculated. In particular, for a random homogeneous
distribution of ellipsosidal inciusions

cey

-63;,—- l(1+9€P,)(1-3€l’°){1+§ c'P,(2+3f')] /(l-lSc-P,(l+3c—P,)+%C—P,(2+31’), (4)
(2 [u %EP,(mr')]

C -

C »d = 3C (5)
2

s 2P, (4-97")




= 4 . . . :
Ilere ¢ = Iraber n, being the number density of inclusions. The constants P, and P, depend
raben,

on the geometrical propertics of the inclusions as well as on the mechanical properties (A u A" g")
of the matrix and the inclusions. P, i1s simply given by

p = 2/p-1
1 9 M

In deriving (4) and (5) it has been assumed that the inclusions are similar in shape. size and
physical properties.

When there is an  imtermediate laver between the inclusion and the matrix, then the
coclficients Ayy and B,, cannot be obtained in exact form; they have to be determined
numerically for general clliposoirdal inclusions.  For spherical inclusions. on the other hand. exact
expressions for Ayy and BW. valid at arbitrary frequencies, can be obtained if the intermcediate
laver has constant properties. Also, for sphcricl:gl inclusions with (/hin interface lavers having
variable properties. Ayy and B#v can be obtained approximately 1f h/x<<l, h/a<<l,  tere h o1s
the thickness of the interface layer. a the radius of the spherical inclusions, and A the wavelength
of the incident wave. Even then, the problem of dctermining phase vclocilic.s of longitudinal and
shear waves in the composite material at finite frequencies is complicated . The problem s
simpler if the volume concentration of inclusions is small. This 1s discussed in the following

Consider a spherical inclusion of radius a with an interface laver (Figure 2). Let the
incident field be given by

i 1k,z ik,z
u = ¢ € z *+ € <]

~

X (6)

where k = w/C,. The scattered field is then given by

uls) = 4P 4 ys (]

where superscripts p and s refer to longitudinal-wave and shcar-wave components. respectively.
Now it will be assumed that within the interface laver the elastic coefficients A, and u, vary with
the distance from the center of the inclusions as

A o+ 2u(c) = (A, + 2p7) f(r), a<r<a+h, ($)
w(r) = u’ g(r), a<r<a+h,

where f(r) and g(r) are general integrable functions of r. If it is further assumed that h/ja<<|l,
h/A<<1, then it can be shown that the displacement components satisfy the approximate boundary
conditions on r = a.

i hK,
u(s) .U n _ u  _ i i r(t)
r r r ANy+du’, rr
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(s) (1) (m _ hKy g
u + U -u = — 7
o o P u'oore

where

. dx dx

AR [N VOO

! J f(a+hx) X J sfa+hx)
0o

Superseript (1) refers to the field quantities within the inclusion. Tij 1s the stress tensor.
To this order of approximation the traction componcents ... 7.4 and Tre are continuous at r =
a 'll"uhcsc simplhified boundary conditions allow the single scattering problem to be soived

exactly
When r = e, one obtains from Eq. (7) the far-licld behavior of us when the incident

wave 1s given by a plane-longitudinal wave (the first term on the right-hand side of Eq. (6)).
Then 1t can be shown that

ik, r ik,r
¢ . usS ~ hPo)

uP ~ gP® ¢ g (10)

For the incident plane-shear wave (the second term on the night hand side of Eq. (6)) one finds

eik,r

ubP ~ gPg.¢) — ¢ (1n
ik, ik,r

us ~ hS,(6.¢) T cg + h,%(8.¢) €q

The expressions for the amplitude functions gP. hP, and so on, can be obtained from
our ecarlicr study'®.  Using Eqs. (10) and (11) and the forward-scattering theorcm' we then obtain
the equations for the effective wave numbers in the composite medium:

Py
k,

1. 3T PO (12)
kl kl

for the longitudinal wave and

K
L I L P A (X)) (13)
kl kl

for the shecar wave.  Since gP(0) and h,5(0.0) are complex. effective waves will be both dispersive
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and attenuative.
Effective Propertics of a Fiber-Reinforced Composite

The analvsis presented above for inclustons can be applied also to a medium reinforced by
aligned contiuous  fibers. In that case. one can derive equations simtlar to (4 and (5 for
longitudinal and shear waves propagating perpendicular to the fibers.  Taking the x, axismalong
the fibers, and assuming them to be transversely isotropic about this axis, 1t was shown  that
for S waves polarized along the fibers the eficctive wave number, 7. s

_ - ® (I-ctm-D/tm-1)) . (14)
K, p (lec(m-1)/(m=+1))

where p“ is the effective density and m = C,/u.  For longitudinal and shear waves polarized in
a plane perpendicular to the fibers we get

K p™ (1+cP)[1+cPy(1+71)] (15)
K 1-cP,(1-7)-2P,P, )
- ‘2 *
K, . o /o ‘ (16)
S 26(Coa-k) (A+20)

+

22y + (1-CY N+ 3u) (C - )

Note that C,,. C,,, C,.. C,. and C,, are the five independent elastic constants characterizing the
fibers and p = p[l+c(p’/p-1)]. P, and P, are defined by the relationships

P, = #(Cop-p) (17)
S O W VT T P

K'T - {(A+p)
- Kron

) =
P, =

where K'p o1 the plane-stramn bulk modulus of the fibers. ;I‘hc remaining two clastic moduli of
the compostte are obtained from relationships derived by Hill .

Dispersion of Guided Waves in a Laminated Plate with Interface Laycrs

In composite materials. interfaces between the different constitutents play an important role
in deternmuming  their mechanical behavior.  As discussed above, the effect of interfacial layers
between inclusions and matrix medium on composite propertics can be evaluated approximately
using a scattering approach. For laminated-composite plate structures, the effect on the dispersion
characteristics caused by interfacial layers between the laminae can be analyzed in detail. The
changes 1n dispersion characteristics should provide a way to ultrasonically evaluate the interface
properties.

In this section we briefly outline a theoretical technique to study guided-wave propagation
in a lanunated plate with interface layers.  For simplicity of analysis. we consider only isotropic
laninac and sotropic nterface layers Equations governing guided-wave propagation in such a
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plate can be solved exactly. However, if the laminac are isotropic, then an e¢xact analvsis s
extremely complicated.  To avould the difficulties associated with an exact analysis, we developed a
suffness mcethod 1n which cach lamina (and interface laver) 1s divided 1nto several sublavers
Polynomul nterpolation funcuions for through-th.ckness variation of displacements in each laver
are assumed.  The nterpolation functions involve a discrete number of gencralized coordinates that
are functuions of the in-plane coordinates x and v (Figure 3) and ume t The genceralized
coordinates are the Jdisplacements and tractions at the interfaces between the adjoining sublavers,
thus cnsuring continuty of these quantities at the interfaces. By applymng Hanulton’s principle the
dispersion equation s obtained as a standard algebraic cigenvalue problem whose solutions yicld
the dispersion relations and the varation of stresses and displacements through the plate thickness
ol the plate. This techmique was used earlier’ to study wave propagation in an infinite
periodically laminated medium.  The application of the techmigque to a sandwich plate was discussed
i detall elsewhere® ttere. for brevity, we present only the results for a particular sandwich
plate.

RESULTS AND DISCUSSION
Cast-Iron Elastic Constants

Graphite-particle shape affects cast-iron’s properties, both physical and mechanical. Several
studies®*~¥ dealt with the various properties of cast-iron as they depend on graphite particle
shape. But all these studies, experimental and theoretical, dealt only with limiting shapes: sphere,
rod, and disc. They failed to deal with arbitrary aspect ratio, c/a. of the particles. Using Egs.
(3) and (5)., we calculated Young's modulus, E, of cast-iron for various values of c/a. The
results are shown i Figure 4 along with the experimental observations rfeported by various
investigators 7% In this figure, calculated results are for two different volume fractions--10 and
12 percent--a range that contains most of the studied cast-irons.

The two upper. necarly horizontal. curves correspond to graphite’s upper third-order
clastic-constant  bounds. The two lower curves correspond to the lower bounds. From
monocrystal clastic constants, using equations by Kroner and Koch®®, for graphite, Wawra, et al®
calculated third-order elastic-constant bounds. They found the following effective quasi-isotropic
clastic constants: E'= 4.17(1.34) GPa; u'= 1.41(0.45) GPa. Values outside parentheses dcnote
upper bounds; those inside denote lower. For the matrix phase we took the constants for alpha
iron: E = 206 GPa, u = 80.0 GPa.

Corresponding  to  observation. our model predicts a strong  dependence of Young's
modulus on aspect ratio.  Near the spherical Limit (c/a = 1), E*. varies slowly with ¢/a.  Near
the oblate-disc hmit (c/a = 0), E* varies rapidly with ¢/a. An mtercsting result is that graphite's
lower-bound gquasi-isotropic elastic constants fit observation so well.

Elaslic Constants of Graphitc-Aluminum Composile

Figure 5 shows the microstructure of graphite-fiber-reinforced aluminum  obtained from a
commerical source. By Archimedes’ method, we found the mass density of the composite to be
2.013 g/em’.  For a fiber volume fraction of 0.70, using 2.6523 for aluminum, the graphite fiber
density s predicted to be 1.738, very close to the manufacturer's estimate of 1.76.

We determined the nine Cij by measuring eighteen sound speeds on four specimen
geometries described previously®.  For brevity, we omit further description, except for a few
salient details: bond--phenylsalicylate; transducers--quartz, x-cut and ac-cut; frequencies--5 to 6
MHz; specimen size--l6-mm cube, or smaller depending on specimen geometry.

w
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Table 1 shows the study’s principal results. Column 1 lsts various elastic constants.

Column 2 gives a set of fiber elastic constants We chose these because Ej, agrees closcly

with the E,; for the present fiber. Column 3 shows measured results. From the measured
results and the predictions from Eqs. (13)-(16) together with Hhil's relationships, we predicted the
fiber propertics shown in column 4 We used the caleulational sequence:  C,,. C,.. C,,.-C,.. v,
and E,,. Column 3 shows the calculated Clj' Finallv., column 6 shows the ratio of column § to
column 3

L1 P

Results of column 3 of Table | show that the studied composite shows orthotropic clastic
symmetry. which s approxamately  transversely isotropic with the x,-axis as the symmetry axis.
The mucrostructure 1 Figure 5 also suggests transverse-1sotropic symmetry.

Concerning  the  first-guess graphite-fiber elastic-constant calculations. we find reasonable
agreement for C,,, C,,. C,;. and C,,. Thus. the criterion of choosing a graphite clastic-constant
sct based on Ej,. the axial Young's modulus, succeeds partially.

One can obtain a better, complete graphite elastic-constant set by using the model
equuations inversely This is shown in column 4 and it i1s seen that the constants appearing n
this column differ significantly from the first-guess values in column 2.

For the graphite-aluminum composite, Figure 6 shows the variation with temperature of
the principal elastic stiffnesses Cij i1 = 1.,6). For comparison. the figure also shows the
temperaturc  variation of the longitudinal and shear moduli of the aluminum matrix. The
graphite-aluminum C;;-versus-temperature results in Figure 6 show strong anisotropy. The largest
change occurs in C,,. the longitudinal elastic stiffness perpendicular to the fibers. The smallest
change occurs in C,;, the longitudinal elastic stiffness parallel to the fibers. These changes agree
with the well-known high axial elastic stiffness and low axial thermal expansivity of graphite
fibers. The three shear moduli--C,,. C,,. C,,--fall between these extremes. Among the shear
moduli. C,, shows the largest change; this reflects the low C,, values for both the fiber and the
matrix.  Almost universally, lower elastic stiffness. C, means higher dC/dT. In Figure 6. the
near equivalence of dC,/dT and dC,,/dT reflects the approximate transverse isolrdp_v of this
composite.

Interface Effccts on Damping and Phasc Velocitics itn an SiC-Particle Reinforced Aluminum

Equations (12) and (13) provide implicit relations for the complex wave numbers k,” and
k,© if it is assumed that the inclusion is placed in a composite medium with the effective
unknown dynamic propertics. Then k. and k,?, appearing on the right-hand sides of Egs. (12)
and (13} will be replaced by k. and k;? respectively. These equations then can be solved
iteratively for the unknown k,” and k,*. These results are shown in Figures 7-10. Note that
Im(k“) measures damping and Re(k/K) measures the ratio of the phase vclocitics in the matrix
and the composite. In these calculations the interface layer properties were assumed to  vary
lincarly across the layer thickness f[rom the properties of the particles to those of the malri:g.
The elastic propertics of the particies and the matrix were taken as: AN+’ = 4'7423(10" N/m .,
u = 1.881x10 N/m ., p° = 3.181 g/cm . A+2u = 1.105x10 N/m ., g = 0.267x10 N/m , { = 2.705
g/em . Calculations were performed with or without interface layers and at two volume [ractions:
¢ = 0.05, 0.15. The presence of the interface layer decreases the damping as well as the phase
velocitics.

Dispersion in a Sandwich Plate with Low-Vclocity Intcrface Laycrs

Using the numerical technique described in the thcory section. wec analyzed the dispersion
of elastic waves in the five-layer plate shown in Figure 3. The displaccment is assumed to be
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. a
"’.:;' It all the layers are transversely isotropic with the symmetry axes parallel or perpendicular
".:,,: to the dirccion of wave propagation (x-axis), then the equations governing the y-component of
N the displucement, u,. uncouple from those governing the x and 2z components. The former
ety correspond to the SII motion and the latter to plane strain motion.
.
':: Figures 11 and 12 show the disperison curves for the plane-strain motion, and Figure 13
shows those for the SH motion.  In these figures the vertical axis corresponds 1o 2 =
’.::. uh,rrvrgt and the hornizontal axis to ¢ = kh/z.  Here h as the thickness of cach of the two
e
low velocity lavers and C, = \/m 15 the shear wave velocity i these layers.  The properties
s of the suff lavers are taken to be g' = 8.76x10° N/m?, p'= 1.771 g/em®, v»'= 0.3, Those of the
Sy soft lavers are u = 1.77x10° N/m*, p = 1.2 g/em’. » = 0.3. h/I1 1s taken to be 0.]
g3
34: Figure 1! shows the first mine modes for small values of € and ¢ [t is seen that these
~ dispersion curves look qualitauvely very similar to those for an isotropic plate However. the
g important difference 1s that cut-off frequencies of higher modes are lowered signficantlv. Figure
Lo 12 shows the first three modes over a wide range of frequency and wave number. [t is found
\-"‘ that at short wavelengths the phase velocity of the first two modes departs sigmficantly from the
"-f:' Ravleigh wave velocity . the stiff layer. Dispersion curves for SH-motion (Figure 13) also show
v similar features The departure depends on the rattos of the elastic properties and of the
i“" : thicknesses of the low-velocity layers and the laminae. This effect and the lowering of cutoff
Ny frequencies should lead to ultrasonic characterization of interfaces.
)
o CONCLUSIONS
o,
- We have shown that modeling and experimental observations of particle-reinforced and
fiber-reinforced materials lead to property characterization of the reinforcing phases. Also. we
) have prescnted model calculations of interface effects on phase velocities and attenuation of waves
.\-;.: In a composite medium. [t is shown that, for the particular systems considered., the presence of
::::: low-velocity interface lavers decreases the phase velocities as well as the attenuation.
:}} .
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:- Table 1. Measured and calculated elastic constants for graphite-fiber-reinforced
x composite and calculated raphite-fiber elastic constants. Except for dimension-
« less vii’ units are GPa.

) 32 Composite Fiber Composite Composite-
28 Fiber Measured Calculaced Calculated Calc. /Meas.
g .

; Cll 20.02 32.18 19.09 32.18 1.00
4

C22 20.02 32.03 19.09 32.14 1.00
I
:: C33 234.77 162.24 234.99 194.14 1.00
#
" c,, 24.00 21.66 19.94 21.66 1.00
“ B
Css 24.00 21.51 19.94 21.66 1.01
C66 5.02 9.31 5.60 9.31 1.00
Ciy 9.98 13.55 7.89 13.56 1.00
: c, 6.45 16.65 10.34 16.60 1.00
W 3
" Cys 6.45 16.65 10.34 16.60 1.00

* E); 15.00 25.94 15.66 25.96 1.00

.l
Eyy 15.00 25.81 15.66 25.96 1.01

) A
N Eqq 232.00 180.09 227.07 100.09 1.00
LY
o Vi, 0.494 0.396 0.399 0.394 0.99

v13 0.014 0.052 0.026 0.052 1.00
l

: v23 0.014 0.053 0.026 0.052 0.98

i: Vzl 0.694 0-394 0-399 00396 1'00
4 Vay 0.215 0.363 0.383 0.393 1.00
N v32 0.215 0.366 0.383 0.363 0.99
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An oblate spheroidal inciusion with interface layer.
A spherical inclusion with interface layer.
A layercd plate with thin interface layers.

For cast-iron, Young's modulus versus graphite-particle aspect ratio. Svmbols
represent measurements.  Curves represent model-calculation results for two volume
fractions: 0.10 and 0.12. Upper, nearly horizontal, curves represent graphite’s upper
third-order-bound  (Kroner-bound) elastic  constants. Lower curves represent
graphite’s lower third-order bound.

Graphite-A2 microstructure.  Transverse section of parallel 7-gm-diameter graphite
fibers distributed nearly homogeneously in aluminum matrix. The fiber volume
fraction equals 70 percent. The white network represents aluminum boundary
regions between fiber bundles used in manufacture.

For a composite consisting of 70-vol.-pct. uniaxial graphite fibers in an aluminum
matrix, the variation with temperature of the principal Cij elastic stiffnesses. Lines
at the right show the variation of the aluminum-matrix longitudinal and shear
moduli, C, and G.

Attenuation of a plane longitudinal wave in a particle-reinforced composite with and
without interface lavers. ¢ denotes volume function of inclusions.

Attenuation of a plane shear wave in a particle-reinforced composite with and
without interface lavers.

Phasc velocity of a plane longitudinal wave in particle-reinforced composite with and
without interface layers.

Phase velocity of a plane shear wave in a particle-reinforced composite with and
without interface layers.

Dispersion of Lamb waves in a sandwich plate at low frequencies.

Dispersion of Lamb waves in a sandwich plate at finite frequencies.

Dispersion of SH waves in a sandwich plate.
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